Photo-oxidative enhancement of polymeric molecular sieve membranes.
نویسندگان
چکیده
High-performance membranes are attractive for molecular-level separations in industrial-scale chemical, energy and environmental processes. The next-generation membranes for these processes are based on molecular sieving materials to simultaneously achieve high throughput and selectivity. Membranes made from polymeric molecular sieves such as polymers of intrinsic microporosity (pore size<2 nm) are especially interesting in being solution processable and highly permeable but currently have modest selectivity. Here we report photo-oxidative surface modification of membranes made of a polymer of intrinsic microporosity. The ultraviolet light field, localized to a near-surface domain, induces reactive ozone that collapses the microporous polymer framework. The rapid, near-surface densification results in asymmetric membranes with a superior selectivity in gas separation while maintaining an apparent permeability that is two orders of magnitude greater than commercially available polymeric membranes. The oxidative chain scission induced by ultraviolet irradiation also indicates the potential application of the polymer in photolithography technology.
منابع مشابه
Techno-economic evaluation of helium recovery from natural gas; A comparison between inorganic and polymeric membrane technology
Natural gas produced at high pressure (50-70 bar) is the only industrial source of helium (He). A membrane separation process may offer a more efficient production system with smaller footprint and lower operational cost than conventional cryogenic system. Inorganic membranes with high mechanical strength are known to exhibit good stability at high pressure. In this work, two inorganic membrane...
متن کاملFabrication of Nanofiltration Membrane from Polysulfone Ultrafiltration Membrane Via Photo olymerization
UV-induced grafting technique was used as a flexible method for surface modification of Polysulfone (PSf) ultrafiltration (UF) membranes in order to prepare hydrophilic nanofiltration (NF) membranes. Flat sheet Polysulfone (PSf) ultrafiltration membranes were prepared via phase inversion method. N-methylene-2-pyrrolidone (NMP) and polyethylene glycol (PEG) of three different molecular weights (...
متن کاملControlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes.
Organic open frameworks with well-defined micropore (pore dimensions below 2 nm) structure are attractive next-generation materials for gas sorption, storage, catalysis and molecular level separations. Polymers of intrinsic microporosity (PIMs) represent a paradigm shift in conceptualizing molecular sieves from conventional ordered frameworks to disordered frameworks with heterogeneous distribu...
متن کاملMechanistic Modeling of Organic Compounds Separation from Water via Polymeric Membranes
A mathematical model considering mass and momentum transfer was developed for simulation of ethanol dewatering via pervaporation process. The process involves removal of water from a water/ethanol liquid mixture using a dense polymeric membrane. The model domain was divided into two compartments including feed and membrane. For a description of water transport in ...
متن کاملMolecular Dynamics Simulations on Polymeric Nanocomposite Membranes Designed to Deliver Pipobromane Anticancer Drug
Three chitosan (CS), polyethylene glycol (PEG) and polylactic acid (PLA) nanocomposite systems containing SiO2 nanoparticles and water molecules were designed by molecular dynamics (MD) simulations to deliver pipobromane (PIP) anticancer drug in order to discover the most appropriate drug delivery system (DDS) in aqueous medium which was analogous to the human body. The density for the CS matri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature communications
دوره 4 شماره
صفحات -
تاریخ انتشار 2013